Redouane ELGHAZI - Studied Problems

Scheduling problems (usually NP-Hard):

- n independent tasks with their execution times (in the simplest case, those are numbers p_1, \ldots, p_n);
- *m* identical processors;
- we want to minimize some objective function (e.g. the energy consumed by the schedule; the finishing time of the last task...).

Redouane ELGHAZI - Studied Problems

Scheduling problems (usually NP-Hard):

- n independent tasks with their execution times (in the simplest case, those are numbers p_1, \ldots, p_n);
- *m* identical processors;
- we want to minimize some objective function (e.g. the energy consumed by the schedule; the finishing time of the last task...).

We study heuristic (e.g. the greedy Longest Processing Time (LPT)).

Redouane ELGHAZI - Studied Problems

Scheduling problems (usually NP-Hard):

- n independent tasks with their execution times (in the simplest case, those are numbers p_1, \ldots, p_n);
- *m* identical processors;
- we want to minimize some objective function (e.g. the energy consumed by the schedule; the finishing time of the last task...).

We study heuristic (e.g. the greedy Longest Processing Time (LPT)).

We study asymptotic behaviors of those heuristics through:

- theoretical bounds;
- simulations (personal "framework" in C++, exploitation in Python);
- experiments (future).

Redouane ELGHAZI – Example

Example instance, with 10 sequential tasks and 3 processors:

1	6		8	
3		8	4	
9			8	
9			7	

Redouane ELGHAZI – Example

The solution of the greedy heuristic LPT:

