

Wireless Sensor Networks for Air Pollution Monitoring

Postdoc at Rice University

Brief Introduction

PhD¹ | Oct. 2015 → Mar. 2019 | CITI Lab, Lyon (INSA-Lyon and INRIA Agora):

- Topic: <u>Deployment</u> and <u>Scheduling</u> of Wireless Sensor Networks (WSN)
- Advisors: Hervé Rivano & Walid Bechkit
- Project: Urpolsens (Labex IMU, Lyon)
- Ph.D. awards: GDR RSD & ACM ASF, INSA-Lyon, SIF/Gilles-Kahn (accessit)

Mobility² during PhD |Feb. 2018 → May 2018 | University of Ottawa, Canada

- Topic: <u>Scheduling</u> of Wireless Sensor Networks (WSN)
- Collaboration with: Azzedine Boukerche

Postdoc³ | Since Apr. 2019 | Rice University, Texas, USA

- Topic: <u>Mobility</u> Optimization of Drone Networks
- Advisor: Edward Knightly
- **Project:** ASTRO (NSF)
- Responsibilities: Scientific lead

¹Funded by an INRIA CORDI-S scholarship

² Funded through the Mitacs Globalink research award

³ Rice University is ranked **16** in top US universities

INSA

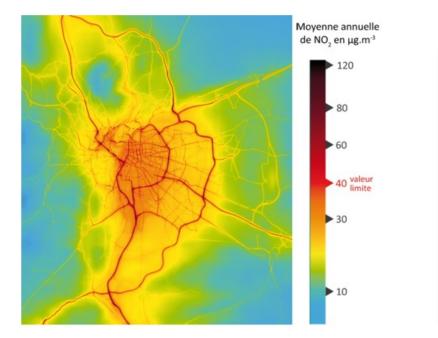
Overview on Air Pollution

Pic de pollution de l'air aux particules fines : la circulation différenciée maintenue à Lyon vendredi

Le préfet a pris cette décision en raison du maintien du niveau de « vigilance rouge » dans le bassin lyonnais et le nord de l'Isère pour une durée de vingt-quatre heures.

Le Monde avec AFP • Publié le 28 février 2019 à 19h44

- > Diabetes \rightarrow 3.2 million people per year
- ➤ Asthma → a 25% increase
- ➢ Premature deaths → 127.000 children per year

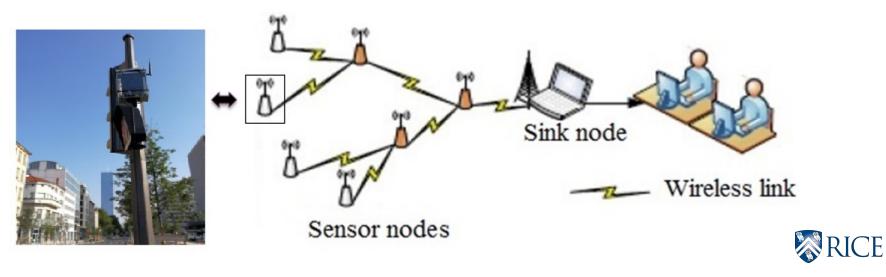

source: sciencenews.org source: theguardian.com source: citymetric.com source: lemonde.fr

Air Quality Traditional Monitoring

Modeling : physicochemical dispersion models (SIRANE, ADMS, etc.)
 Measurements: reference monitoring stations

NO₂ annual concentrations, 2012 Lyon, France (Source **ATMO-AURA**)

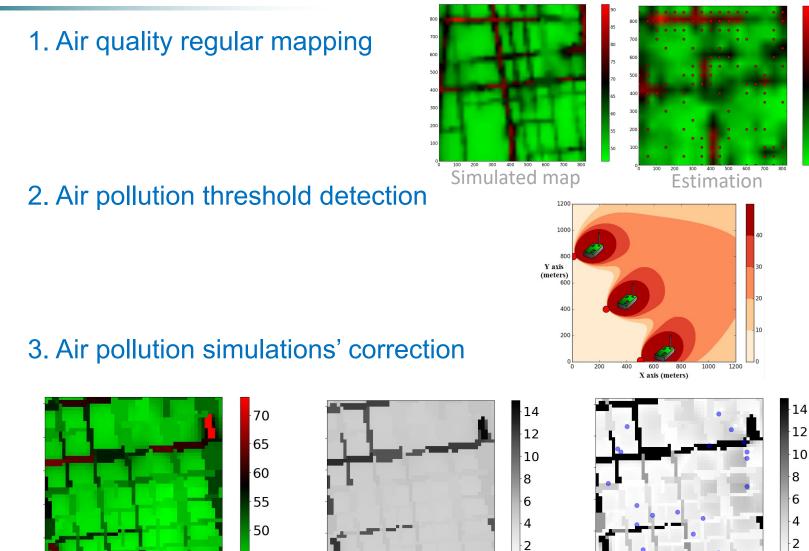
Traditional monitoring stations - Lyon (France) -



Using low-cost WSN for Air Quality Monitoring

- + Smaller
- + Low-cost
- + Better spatial/temporal granularity

- Less accurate
- Limited lifetime
- Calibration issues



Use cases of Air Pollution Monitoring

45

Simulated map

6/48

Errors before correction

UNIVERSITE DE LYON

8

6

4

2

0

Errors after correction

WSN deployment issue:

- Q: How many sensors do we need ?
- Q: Where should we place these sensors ?
- Q: Is the sensor network connected ?

WSN scheduling issue:

- Q: Can we turn off some sensors to extend their lifetime ?
- Q: Which sensors should be turned off ?
- Q: When selected sensors should be turned off?

PhD Main Contributions and Outline

□ State of the art

- Design and Deployment of an Air Pollution Monitoring Platform
- □ WSN Deployment for Air Quality Regular Mapping
- □ WSN Deployment for Air Pollution Detection
- WSN Deployment for Air Pollution Simulations' Correction
- □ WSN Scheduling for Air Pollution Simulations' Correction
- □ Latest and Ongoing Research

 General purpose:

 Explore the potential of low-cost WSN for

 fine characterization of air quality

 Consortium:

 Image: Altrogeneration of air construction

 Image: Altrogeneration of air construction

 Image: Altrogeneration of air construction

 Image: Altrogeneration

 Image: Altrogenet

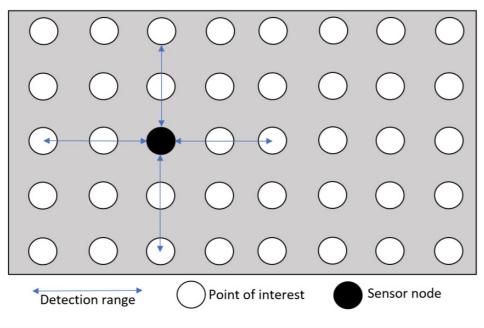
 Image:

Main objectives:

1. Design and deployment of a WSN platform for air quality monitoring (NO2 sensing)

9/48

- 2. Optimization of WSN deployment and scheduling
- 3. Conduct a sociological study on air quality perception



WSN Deployment and Scheduling

Classification of existing works

- Event-aware methods:
 - Based on detection models

- Correlation-aware methods:
 - Leverage correlations between sensor measurements
 - Generic methods

WSN Deployment and Scheduling

Summary of existing works

Author(s)	Work class	Deployment	Scheduling	Connectivity	Nodes'
					Heterogeneity
Chakrabarty et al.	Event-aware	Yes	-	-	Yes
Altinel et al.	Event-aware	Yes	-	-	Yes
Rebai et al.	Event-aware	Yes	-	Yes	-
Sengupta et al.	Event-aware	Yes	-	Yes	-
Hu et al.	Event-aware	-	Yes	-	-
Liaskovitis et al.	Correlation-aware	-	Yes	-	-
Lin et al.	Event-aware	-	Yes	Yes	Yes
Du et al.	Event-aware	-	Yes	-	-
Keskin et al.	Event-aware	Yes	Yes	Yes	Yes
Mini et al.	Event-aware	Yes	Yes	-	Yes
Chen et al.	Event-aware	-	Yes	Yes	-
Deng et al.	Correlation-aware	-	Yes	-	-
Lu et al.	Event-aware	-	Yes	Yes	-
Boubrima et al.	Air quality mapping	Yes	-	Yes	Yes
Boubrima et al.	Air pollution detection	Yes		Yes	Yes
Boubrima et al.	Air pollution simulations' correction	Yes	Yes	Yes	Yes

□ State of the art

- Design and Deployment of an energy efficient Air Pollution Monitoring Platform
- □ WSN Deployment for Air Quality Regular Mapping
- □ WSN Deployment for Air Pollution Detection
- WSN Deployment for Air Pollution Simulations' Correction
- WSN Scheduling for Air Pollution Simulations' Correction

The UrPolSens Platform

Energy-efficient design of pollution sensors

□ NO₂ probes: Alphasense, CairSens

□ Wireless communications: LoRa;

- □ Storage: EEPROM + SD
- □ Software: Duty cycling routines
- **D** Power: Batteries and solar panels
 - Power consumption: 100mW
 (vs. Opensense: 40W)

13/48

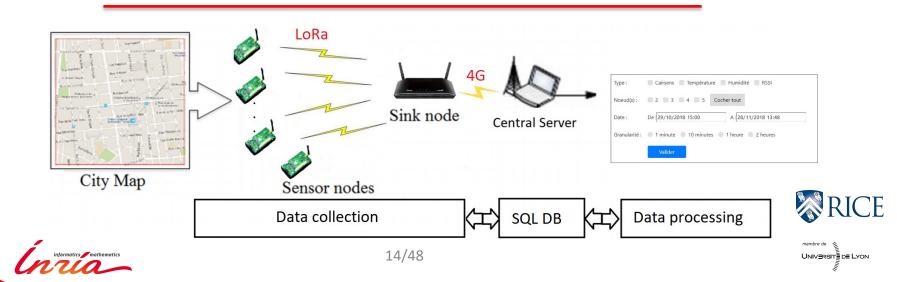
First prototype

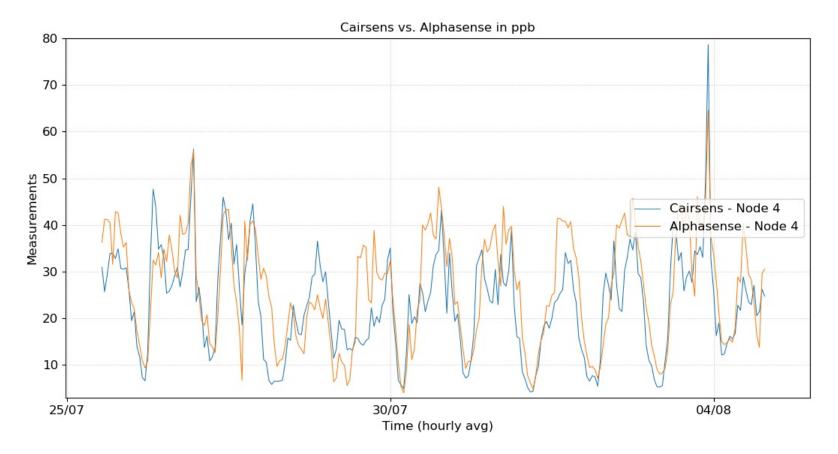
UNIVERSITE DE LYON


Printed circuit

The UrPolSens Platform

Deployment of our nodes in the Lyon city




First tests

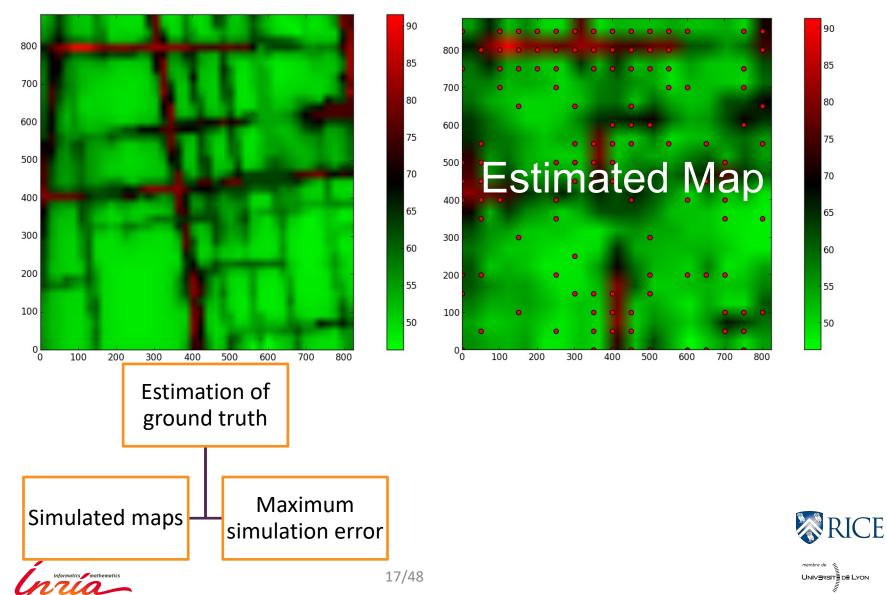
Deployment in Lyon: 12 sensor nodes + 1 gateway

The UrPolSens Platform

Sensing accuracy and low power design

> Normalized RMSE = 0.10

RICE


□ State of the art

- Design and Deployment of an Air Pollution Monitoring Platform
- WSN Deployment for Air Quality Regular Mapping
 WSN Deployment for Air Pollution Detection
 WSN Deployment for Air Pollution Simulations' Correction
 WSN Scheduling for Air Pollution Simulations' Correction

Main idea

Problem statement

Find the optimal positions of sensors and sinks while ensuring :

- 1. Air Quality Mapping with a bounded-interpolation-error
- 2. Network Connectivity
- 3. Minimum deployment cost
- * Dual problem: Estimation error minimization

Deployment cost

Parameters

\mathcal{P}	Set of points approximating the deployment region
c_p^{sensor}	The cost of deploying a sensor at point p
c_p^{sink}	The cost of deploying a sink at point p

Variables

x_p	Define whether a sensor is deployed at point p or not		
	$x_p \in \{0,1\}, \ p \in \mathcal{P}$		
y_p	Define whether a sink is deployed at point p or not		
	$y_p \in \{0,1\}, \ p \in \mathcal{P}$		

$$\mathcal{F} = \sum_{p \in \mathcal{P}} c_p^{sensor} * x_p + \sum_{p \in \mathcal{P}} c_p^{sink} * y_p$$

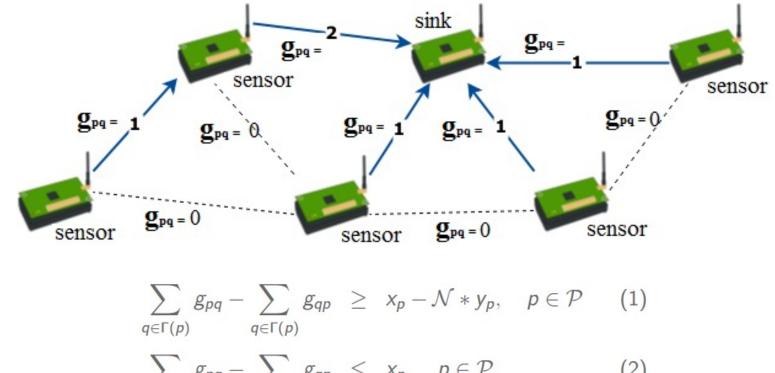
UNIVERSITE DE LYON

membre de

Air quality mapping formulation

Estimated Map:

 $\widehat{\mathcal{Z}}_{p} = x_{p} \cdot \mathcal{Z}_{p} + (1 - x_{p}) \cdot \frac{\sum_{q \in \mathcal{P}} \mathcal{W}_{pq} \cdot x_{q} \cdot \mathcal{Z}_{q}}{\sum_{q \in \mathcal{P}} \mathcal{W}_{pq} \cdot x_{q}} | \text{Zp: Sensor measurements}$


Estimation errors

$$e_{p} = UB(|\widehat{Z}_{p} - G_{p}|) \qquad | \text{ Mp: Modeling simulations} \\ | \mathcal{M}_{p} - G_{p} \in [-m_{p}, m_{p}] \\ | \mathcal{Z}_{p} - G_{p} \in [-s_{p}, s_{p}] \\ | \mathcal{Z}_{p} - \mathcal{M}_{p} \in [-s_{p} - m_{p}, s_{p} + m_{p}] \\ (1 - x_{p}) \end{aligned}$$

$$e_{p} = x_{p} \cdot s_{p} + \frac{(1 - x_{p})}{\sum_{q \in \mathcal{P}} \mathcal{W}_{pq} \cdot x_{q}} \cdot Max \{$$
$$\sum_{q \in \mathcal{P}} \mathcal{W}_{pq} \cdot x_{q} \cdot (\mathcal{M}_{q} - \mathcal{M}_{p} + s_{q} + m_{q} + m_{p}),$$
$$\sum_{q \in \mathcal{P}} \mathcal{W}_{pq} \cdot x_{q} \cdot (\mathcal{M}_{p} - \mathcal{M}_{q} + s_{q} + m_{q} + m_{p})\}$$

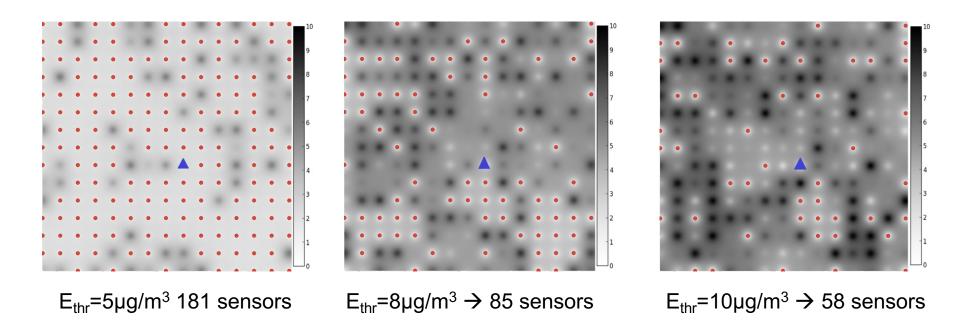
$$\sum_{q\in\Gamma(p)}g_{pq}-\sum_{q\in\Gamma(p)}g_{qp} \leq x_p, \quad p\in\mathcal{P}$$
(2)

$$\sum_{q\in\Gamma(p)}g_{pq} \leq N*x_p, \quad p\in\mathcal{P}$$
(3)

$$\sum_{p \in \mathcal{P}} \sum_{q \in \Gamma(p)} g_{pq} = \sum_{p \in \mathcal{P}} \sum_{q \in \Gamma(p)} g_{qp}$$
(4)

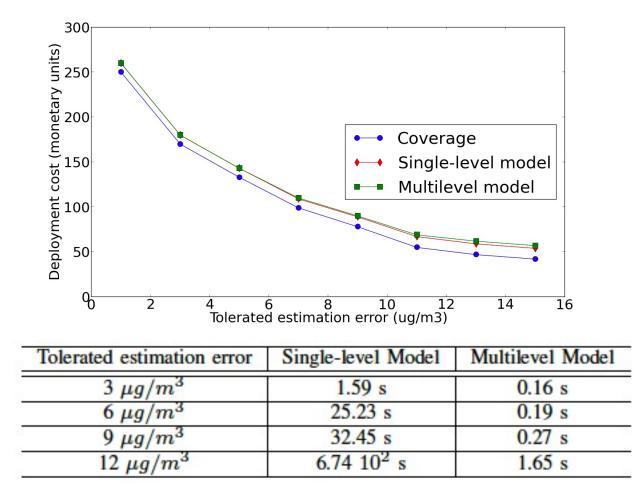
Optimization models

[MIN_COST] Objective: minimize \mathcal{F} Mapping error linearized equations $f \leq E_{thr}$ $f \geq e_p, p \in \mathcal{P} \text{ OR } f = \sum_{p \in \mathcal{P}} e_p/\mathcal{N}$ Connectivity constraints Decision variables: $x_p, y_p \in \{0, 1\}$


Auxiliary variables: $e_p, g_{pq} \in \mathbb{R}^+$

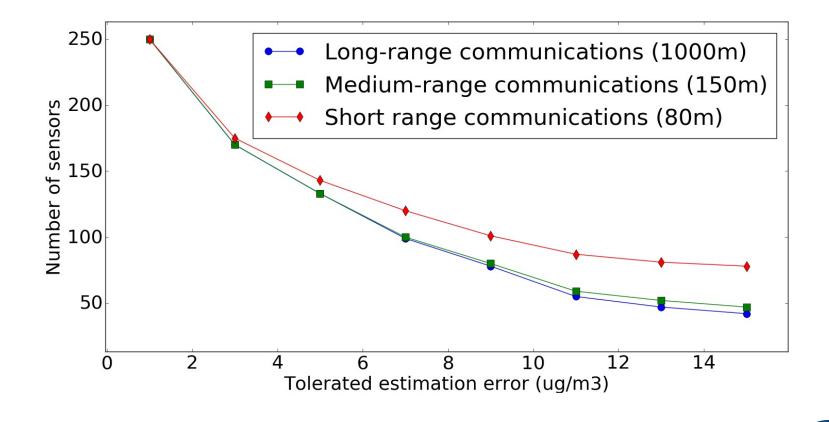
[MIN_ERROR] Objective: minimize fMapping error linearized equations $\mathcal{F} \leq \mathcal{J}$ $f \geq e_p, p \in \mathcal{P} \text{ OR } f = \sum_{p \in \mathcal{P}} e_p / \mathcal{N}$ Connectivity constraints Decision variables: $x_p, y_p \in \{0, 1\}$ Auxiliary variables: $e_p, g_{pq} \in \mathbb{R}^+$

Proof-of-concept: La-Part-Dieu district


Error maps with optimal positions

*error map (ug/m3): the absolute difference between the reference map and the estimated map

Performance evaluation



Single-level resolution Vs multi-level resolution

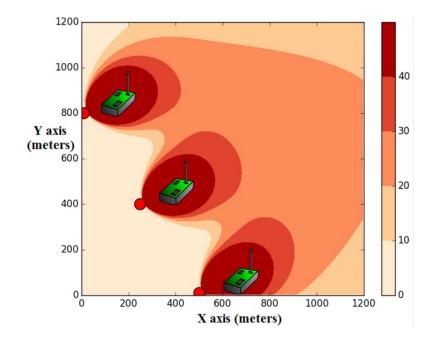
Impact of the communication range of sensors

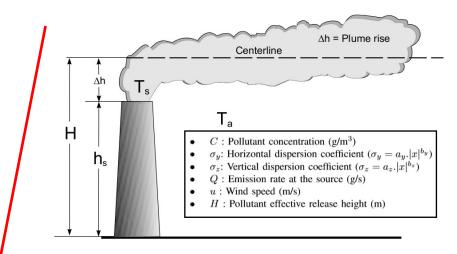
RICE

Extensions

- Impact of Weather conditions
 - Multiple simulated maps
- □ Nodes' heterogeneity
 - Multiple sensor brands
 - Different sensing errors
- Heuristic algorithm based on linear relaxation
 - Polynomial algorithm
 - x100 faster than optimization models

Outline


□ State of the art


- Design and Deployment of an Air Pollution Monitoring Platform
- WSN Deployment for Air Quality Regular Mapping
- □ WSN Deployment for Air Pollution Detection
- WSN Deployment for Air Pollution Simulations' Correction
- □ WSN Scheduling for Air Pollution Simulations' Correction

Main idea

Gaussian pollution dispersion model

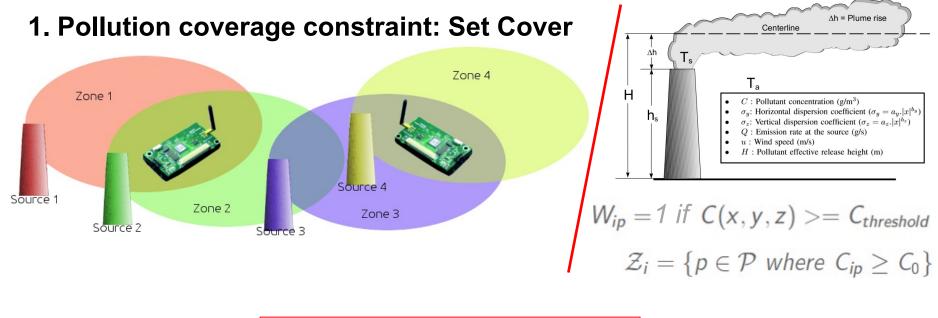
UNIVERSITE DE LYON

membre de

Problem statement

Given:

- 1 A Set ${\mathcal P}$ of ${\mathcal N}$ potential positions where sensors and sinks can be deployed
- 2 A Set ${\mathcal I}$ of ${\mathcal M}$ pollution sources that have to be monitored


Find the optimal positions of sensors and sinks among ${\mathcal P}$ so as:

- The deployment cost is minimized
- **2** Each pollution source in \mathcal{I} is K-Covered
- 3 The positioned sensors and sinks form a connected network

Basic deployment model

$$\sum_{p\in\mathcal{P}}\mathcal{W}_{ip}*(x_p+y_p)\geq K,\quad i\in\mathcal{I}$$

2. Network connectivity

Using the **flow** formalism

Enhanced deployment model

- Joint modeling of coverage and connectivity
- Using only the flow concept

$$\sum_{p \in \mathcal{Z}_{i}} f_{ip} = K, \quad i \in \mathcal{I}$$

$$\sum_{i \in \mathcal{I} : p \in \mathcal{Z}_{i}} f_{ip} + \sum_{q \in \Gamma(p)} (g_{qp} - g_{pq}) \leq K * \mathcal{M} * y_{p}, \quad p \in \mathcal{P}$$

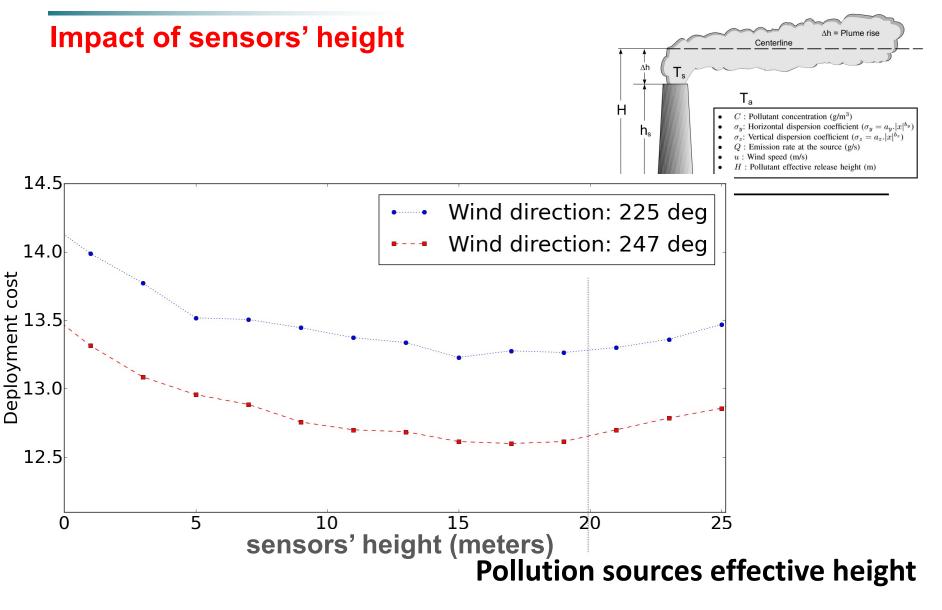
$$\sum_{i \in \mathcal{I} : p \in \mathcal{Z}_{i}} f_{ip} + \sum_{q \in \Gamma(p)} (g_{qp} - g_{pq}) \geq 0, \quad p \in \mathcal{P}$$

$$\sum_{p \in \mathcal{P} \ i \in \mathcal{I} : p \in \mathcal{Z}_{i}} f_{ip} + \sum_{q \in \Gamma(p)} g_{qp}) = \sum_{p \in \mathcal{P}, q \in \Gamma(p)} g_{pq} + K * \mathcal{M}$$

$$(8)$$

$$(5)$$

Performance evaluation


CPU time (seconds)				
Basic Model	Enhanced Model			
7.460	0.890			
20.400	2.810			
29.830	3.360			
68.200	8.820			
31.470	3.970			

Area of	Compactness (n	b. of vars. and consts)	Tightness (int. gap)		
interest (km ²)	Basic Model	Enhanced Model	Basic Model	Enhanced Model	
[0.00 - 0.20[2193	2275	0.880	0.070	
[0.20 - 0.45]	2194	2354	0.870	0.080	
[0.45 - 0.70]	2195	2429	0.850	0.120	
[0.70 - 0.95[2196	2474	0.830	0.180	
Mean	2194.5	2383	0.860	0.110	

*Integrality gap: $(Z_{ILP} - Z_{LP})/Z_{ILP}$

Extensions

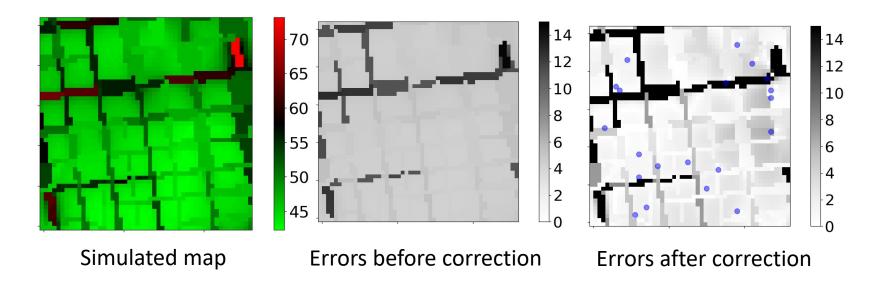
□ Taking into account the impact of weather conditions

- Multiple scenarios
- Taking into account sensing errors
 Probabilistic vs. binary formulation
- □ Data aware localization of pollution zones
 - > An adapted spatiotemporal clustering algorithm

Outline

□ State of the art

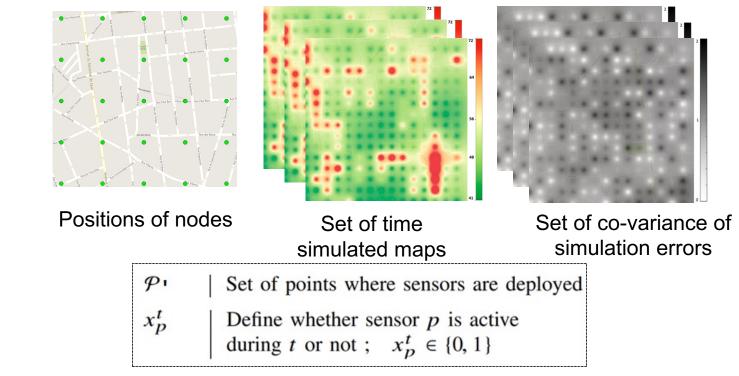
- Design and Deployment of an Air Pollution Monitoring Platform
- WSN Deployment for Air Quality Regular Mapping
- □ WSN Deployment for Air Pollution Detection
- WSN Deployment for Air Pollution Simulations' Correction
- □ WSN Scheduling for Air Pollution Simulations' Correction



WSN Scheduling for Air Pollution Simulations' Correction

Main idea

- Data assimilation vs. Interpolation
- New coverage metric formulation
- Deployment vs. Scheduling



Problem statement

Given a set of already deployed sensor nodes with:

Find the optimal scheduling of the sensing activity of the nodes such that:

- 1. The network lifetime is maximized
- 2. The network remains connected
- 3. The required estimation error remains ensured

Formulation of estimated concentrations

$$\widehat{\mathcal{Z}}_{p}^{t} = \mathcal{M}_{p}^{t} + \frac{\sum_{q \in \mathcal{P}} \mathcal{W}_{pq} \cdot x_{q}^{t} \cdot (\mathcal{Z}_{q}^{t} - \mathcal{M}_{q}^{t})}{\sum_{q \in \mathcal{P}} \mathcal{W}_{pq} \cdot x_{q}^{t}}$$
$$\widehat{\mathcal{Z}}_{p}^{t} = \mathcal{M}_{p}^{t} - \frac{\sum_{q \in \mathcal{P}} \mathcal{W}_{pq} \cdot x_{q}^{t} \cdot (m_{q}^{t} - s_{q}^{t})}{\sum_{q \in \mathcal{P}} \mathcal{W}_{pq} \cdot x_{q}^{t}}$$

 $\begin{array}{l} \widehat{\mathcal{Z}}_p^t & | \mbox{ Estimated pollution concentrations} \\ \mathcal{Z}_p^t & | \mbox{ Measured pollution concentrations} \\ \mathcal{M}_p^t & | \mbox{ Simulated pollution concentrations} \\ \mathcal{W}_{pq} & | \mbox{ Correlation coefficients} \\ \begin{array}{l} s_p^t \\ s_p^t \\ m_p^t \end{array} & | \mbox{ Sensing errors} \\ m_p^t & | \mbox{ Simulation errors} \\ \end{array}$

Formulation of estimation errors

$$\mathcal{E}_p^t = m_p^t - \frac{\sum_{q \in \mathcal{P}} \mathcal{W}_{pq} \cdot x_q^t \cdot (m_q^t - s_q^t)}{\sum_{q \in \mathcal{P}} \mathcal{W}_{pq} \cdot x_q^t}$$

$$\begin{split} \mathbb{V}ar(\mathcal{E}_{p}^{t}) &= \mathbb{V}ar(m_{p}^{t}) + \frac{\sum_{q \in \mathcal{P}} \mathcal{W}_{pq}^{2} \cdot x_{q}^{t} \cdot (\mathbb{V}ar(m_{q}^{t}) + \mathbb{V}ar(s_{q}^{t})))}{(\sum_{q \in \mathcal{P}} \mathcal{W}_{pq} \cdot x_{q}^{t})^{2}} \\ &- 2 \cdot \frac{\sum_{q \in \mathcal{P}} \mathcal{W}_{pq} \cdot x_{q}^{t} \cdot Cov(m_{p}^{t}, m_{q}^{t})}{\sum_{q \in \mathcal{P}} \mathcal{W}_{pq} \cdot x_{q}^{t}} \\ &+ \frac{\sum_{q_{1} \neq p} \sum_{q_{2} \neq p, q_{1}} \mathcal{W}_{pq_{1}} \cdot \mathcal{W}_{pq_{2}} \cdot x_{q_{1}}^{t} \cdot x_{q_{2}}^{t} \cdot Cov(m_{q_{1}}^{t}, m_{q_{2}}^{t})}{(\sum_{q \in \mathcal{P}} \mathcal{W}_{pq} \cdot x_{q}^{t})^{2}} \end{split}$$

UNIVERSITE DE LYON

nembre de

Network lifetime and energy constraints

Network Lifetime:

 $lpha_t$ Equals to 1 if coverage and connectivity are ensured during 't'

$$\alpha_0 \ge \alpha_1 \ge \alpha_2 \ge \dots$$

Energy contraint:

$$\forall p \in \mathcal{P} \ \sum_{t} ES_p^t * x_p^t + \sum_{t,q} ET_{pq}^t * g_{pq}^t + \sum_{t,q} ER_{pq}^t * g_{qp}^t \leq EI$$

 ES_p^t Energy amount used during a sensing cycle

Energy amount used during the transmission of a packet Energy amount used during the reception of a packet

EI Initial amount of energy

Optimization model

Objective:
$$Maximize \sum_{t \in \mathcal{T}} \alpha_t$$

Energy consumption:

$$\forall p \in \mathcal{P} \ \sum_{t} ES_p^t * x_p^t + \sum_{t,q} ET_{pq}^t * g_{pq}^t + \sum_{t,q} ER_{pq}^t * g_{qp}^t \leq EI$$

Coverage:

$$\mathcal{E}_p^t \leq E, \ p \in \mathcal{P}$$

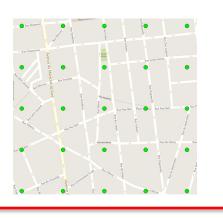
Connectivity: flow concept

Heuristic Algorithm: Iterative rounding

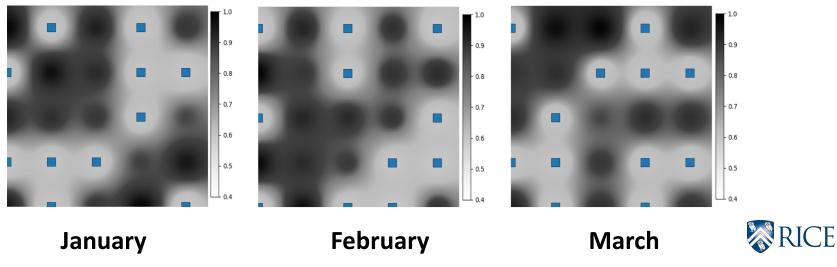
- > Complexity of the model \rightarrow time snapshots
- Polynomial algorithm

Algorithm 1 Scheduling heuristic

Inputs: \mathcal{P} **Outputs:** $\{x_p^t, \alpha_t\}$

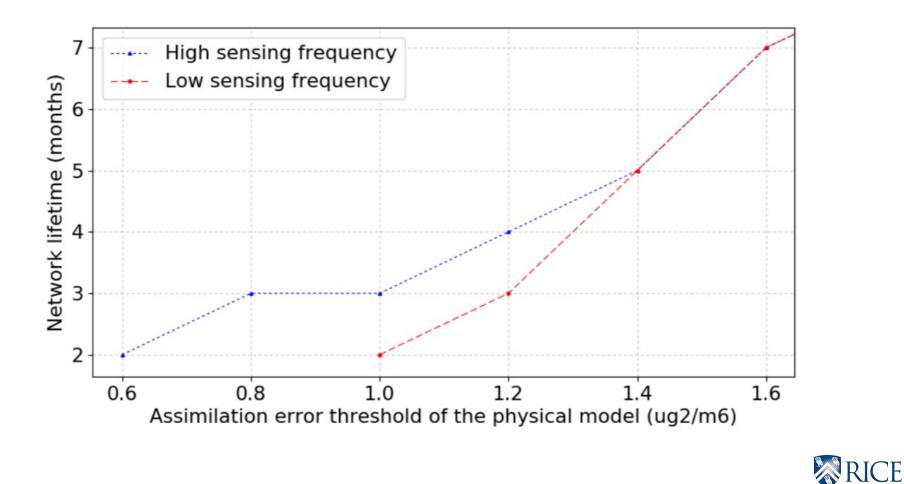

repeat

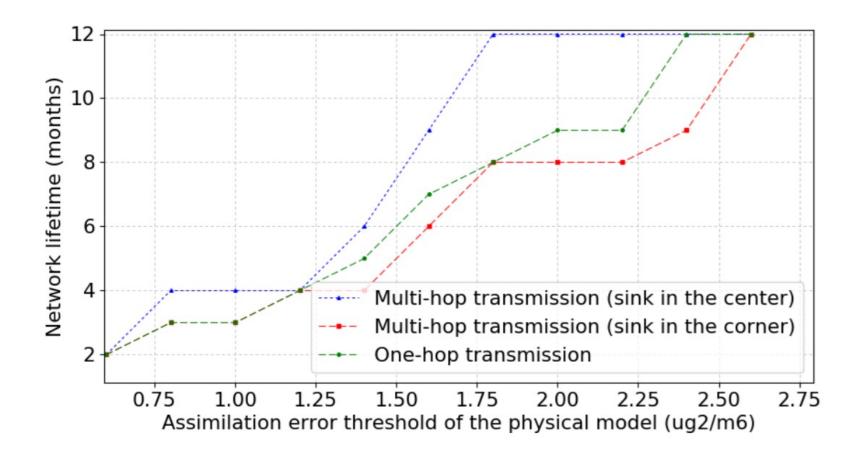
Solve the LP scheduling model Let f be the maximum fractional variable among x_p^t Add constraint f = 1 to the LP model **until** all the variables are binary


Proof of concept: La Part Dieu District

Initial deployment:

Power consumption model:➤ Urpolsens nodes


Optimal scheduling results (Var(Eth)=1 (μg)²/m⁶):



Impact of sensing frequency

Impact of transmission power

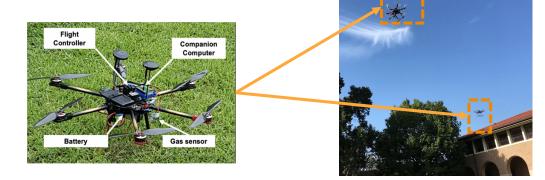
Latest and Ongoing Research

Mobility Optimization of Drone Networks

Problem: UAV mission planning

Optimization of the drones' limited sensing resources

→ <u>Output</u>: optimal drone sensing locations


Challenges:

- \rightarrow Sensing quality: dynamic and context-dependent
- \rightarrow Communication constraints: mobile networks' complexity
- \rightarrow Energy constraints

Proposed solutions:

→ Environmental mapping (ACM TIOT'2021, ACM DroNet@MobiSys'2020)

→ RF targets' localization (IEEE VNC'2020)

Publications

[J1] **Ahmed Boubrima** and Edward W. Knightly. Robust Environmental Sensing using UAV Networks. To appear in ACM **Transactions** on Internet of Things, 2021 **(specialized transaction journal in Internet of Things).**

[J2] **Ahmed Boubrima**, Walid Bechkit and Hervé Rivano. On the Deployment of Wireless Sensor Networks for Air Quality Mapping: Optimization Models and Algorithms. In IEEE/ACM **Transactions** on Networking, 2019 (**A* and Q1 journal rank)**.

[J3] **Ahmed Boubrima**, Walid Bechkit and Hervé Rivano. Optimal WSN Deployment Models for Air Pollution Monitoring. In IEEE **Transactions** on Wireless Communications, 2017 **(Q1 journal rank).**

[J4-r] Zhambyl Shaikhanov, **Ahmed Boubrima** and Edward W. Knightly. FALCON: a Networked Drone System for Sensing, Localizing, and Approaching RF targets. **Under review** at IEEE Internet of Things Journal.

[B1] **Ahmed Boubrima**, Walid Bechkit and Hervé Rivano. On the Optimization of WSN Deployment for Sensing Physical Phenomena: Applications to Urban Air Pollution Monitoring. **Book chapter**, Springer, 2019.

[W1] Ahmed Boubrima and Edward W. Knightly. Robust Mission Planning of UAV Networks for Environmental Sensing. In the 6th ACM Workshop Dronet @ MobiSys 2020, Toronto, Canada (Best paper award).

[C1] Zhambyl Shaikhanov, **Ahmed Boubrima** and Edward W. Knightly. Autonomous Drone Networks for Sensing, Localizing and Approaching RF Targets. In the 2020 IEEE Vehicular Networking Conference (IEEE VNC), 2020. **(B4 rank).**

[C2] **Ahmed Boubrima**, Walid Bechkit, Hervé Rivano and Lionel Soulhac. Leveraging the Potential of WSN for an Efficient Correction of Air Pollution Fine-Grained Simulations. In ICCCN/IC3N 2018, Hangzhou, China. **(A rank).**

[C3] **Ahmed Boubrima**, Azzedine Boukerche, Walid Bechkit and Hervé Rivano. WSN Scheduling for Energy-Efficient Correction of Environmental Modelling. In IEEE MASS 2018), Chengdu, China **(A/B rank)**.

[C4] **Ahmed Boubrima**, Walid Bechkit and Hervé Rivano. A New WSN Deployment Approach for Air Pollution Monitoring. In the 14th IEEE CCNC 2017, Las Vegas, Nevada, USA. **(B rank).**

[C5] **Ahmed Boubrima**, Walid Bechkit and Hervé Rivano. Error-Bounded Air Quality Mapping Using Wireless Sensor Networks. In the 41st IEEE LCN 2016, Dubai, UAE (A rank).

[C6] **Ahmed Boubrima**, Frédéric Matigot, Walid Bechkit, Hervé Rivano and Anne Ruas. Optimal Deployment of Wireless Sensor Networks for Air Pollution Monitoring. In ICCCN/IC3N 2015, Las Vegas, Nevada, USA **(A rank)**.

[C7] **Ahmed Boubrima**, Walid Bechkit, Hervé Rivano and Anne Ruas. Wireless Sensor Networks Deployment for Air Pollution Monitoring. In the 21st International Transport and Air Pollution Conference (TAP 2016), Lyon, France.

[C8] **Ahmed Boubrima**, Walid Bechkit, Hervé Rivano and Lionel Soulhac. Cost-precision Tradeoffs in 3d Air Pollution Mapping using WSN. In the Second International Symposium on Ubiquitous Networking (UNET 2016), Casablanca, Morocco. **(best paper award).**

Thank You

ahmed.boubrima@rice.edu